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1 Introduction

At UC Berkeley, most of my linear algebra foundation lied in EECS16A/B
for the majority of my freshman year. While I really enjoyed EECS16A/B’s
application-based approach to linear algebra, I felt that they didn’t do jus-
tice to some linear algebra topics. Particularly, I felt that determinants were
not taught to its fullest. So in this note, I wanted to write down a rigorous
derivation for many ideas related to determinants. Specifically, I develop the
definition of determinations from multilinearity and use this definition to derive
its permutation definition, cofactor expansion, and various other determinant
properties.

2 Multilinear Map

Multilinearity serves as the core of the determinant definition, so we will first
define multilinearity. Note that this definition is slightly simplified for our pur-
poses.

Definition 1 (Multilinear Map Definition). Let V1, V2, ..., Vk, and W be finite-
dimensional vector spaces. The mapping T : V1×V2×...×Vk →W is multilinear
if it is linear in each of its variables. In other words,

T (v1,..., vi−1, avi + bv′i, vi+1, ..., vk)

= aT (v1, ..., vi−1, vi, vi+1, ..., vk) + bT (v1, ..., vi−1, v
′
i, vi+1, ..., vk)

(1)

for all a, b ∈ R, vj ∈ Vj for j = 1, ..., k and v′i ∈ Vi for i = 1, ..., k.

3 Determinant Definition

Intuitively, determinants for a 2x2 matrix represent the signed area of the par-
allelogram formed by its two column vectors. Determinants for a 3x3 matrix
represent the signed volume of the parallelopiped formed by its three column
vectors. For the general nxn matrix, although its impossible to visualize, the
determinant should represent the signed ”volume” of the hyperparallelopiped

1



formed by its column vectors.

More rigorously defined, a determinant is a function det: (Rn)n → R with
the following properties:

1. det is multilinear (Intuitively, calculating volume is multilinear. Scaling
one vector by some factor will proportionally scale the volume of the re-
sulting parallelpiped by the same factor).

2. det(~e1,..., ~en) = det(In) = 1 (the ”volume” of the unit hypercube is 1).

3. det(...,~u,...,~v...) = −det(...,~v,...~u,...) (This is the antisymmetry property.
Intuitively, changing order of two vectors flips space over, so sign inverts.
3Blue1Brown’s video on determinants gives a really good visual intuition
for this).

Anything with these three properties must be the determinant. With this defi-
nition, we can now derive many ideas relating to the determinant.

Corollary 1. If two vectors in the determinant are the same, the determinant
is zero. In other words,

det(..., ~u, ..., ~u, ...) = 0 (2)

Proof. Using property 3 of determinants, we know that if we swap the two
repeated columns, the determinant becomes the negative of itself:

det(..., ~u, ..., ~u, ...) = −det(..., ~u, ..., ~u, ...) (3)

Thus, the determinant must equal 0.

4 Determinants and Permutations

Let A ∈ Rn×n. We want to find det(A). To do this, let us first split A into its
column vectors ~a1, ...,~an. Then,

det(A) = det(~a1,~a2, ...,~an)

= det(

n∑
i1=1

ai11~ei1 ,

n∑
i2=1

ai22~ei2 , ...,

n∑
in=1

ainn~ein)

=

n∑
i1=1

ai11det(~ei1 ,

n∑
i2=1

ai22~ei2 , ...,

n∑
in=1

ainn~ein)

=

n∑
i1=1

n∑
i2=1

...

n∑
in=1

ai11ai22...ainndet(~ei1 , ~ei2 , ..., ~ein)

(4)

In lines 3 and 4, we can pull out the coefficients of the determinant due to its
multilinearity property.
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With corollary 1, we now know that every time ij = ik for j 6= k, det(~ei1 , ~ei2 , ..., ~ein) =
0. This means we don’t have to consider these cases when we calculate the deter-
minant since they contribute zero to the value of the determinant. Thus, we only
have to consider (i1, i2, ..., in) where they are some permutation of (1, 2, ..., n).
Define Sn to be the set of all permutation of (1, 2, ..., n). Then,

det(A) =
∑
i∈Sn

ai11ai22...ainndet(~ei1 , ~ei2 , ..., ~ein) (5)

where i := (i1, i2, ..., in).
We can now find the value of det(~ei1 , ~ei2 , ..., ~ein). Since we know that det(~e1, ~e2, ..., ~en) =
1 by property 2 and each column swap flips the sign of the determinant by prop-
erty 3, we just need to count the number of column swaps needed to get from
det(~ei1 , ~ei2 , ..., ~ein) to det(~e1, ~e2, ..., ~en). If the number of swaps required is even,
det(~ei1 , ~ei2 , ..., ~ein) = 1. If it is odd, det(~ei1 , ~ei2 , ..., ~ein) = −1. Therefore our
equation is,

det(A) =
∑
i∈Sn

(−1)iai11ai22...ainn (6)

where (−1)i is the sign of the determinant.

Remark. How do we know that (−1)i is meaningful? In other words, how do
we know that the number of steps needed to order an unordered list is deter-
ministically even or odd? Can we find a counterexample where an unordered
list can be ordered in an even number of steps with one sorting method and
ordered in an odd number of steps with a different sorting method? Turns out,
the answer is no. The number of steps being even or odd is deterministic, so
(−1)i is meaningful. But why? I’ve spent a couple of hours trying to prove this
myself, but to no avail. I have not been able to come up with a rigorous proof
yet. However, I do have a intuitive explanation to why this is the case:

Consider an optimal sorting method that sorts an unordered list in the least
number of steps possible. It seems that every other sorting method is just some
less efficient variation of that optimal sorting method. In other words, every
other sorting method is just the optimal sorting method with unnecessary steps.
It also seems that the number of unnecessary steps will always be even since
every step that isn’t a necessary step needs to be backtracked in some manner
at some point (This is the iffy part that is hard to prove). Since an even number
plus an even number is still even and an odd number plus an even number is still
odd, the number of unnecessary steps doesn’t change whether the total number
of steps is even or odd.

5 Cofactor Expansion

Cofactor expansion is a method that computes the determinant of a matrix. It
equates the determinant of a n×n matrix to the summation of its (n−1)×(n−1)
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minors. We denote Aij to be a minor of matrix A obtained by omitting row i
and column j.

Theorem 1 (Cofactor expansion along first row). If A is 1×1, then detA = a11.
Otherwise,

det(A) =

n∑
j=1

(−1)j−1a1jdet(A1j) (7)

Proof. When A is 1 × 1, det(A) = det(~a1) = det(a11~e1) = a11det(~e1) = a11.
Now lets consider n > 1. Since we want to prove cofactor expansion along the
first row, we want to isolate terms where ij = 1 in our determinant formula.

det(A) =
∑
i∈Sn

(−1)iai11ai22...ainn

=

n∑
j=1

∑
i∈Sn
ij=1

(−1)iai11ai22...ainn

=

n∑
j=1

a1j
∑
i∈Sn
ij=1

(−1)iai11ai22...âijj ...ainn

(8)

where âijj represents omitting that term. Notice that currently i = (i1, ..., in).

But now with the knowledge that ij = 1, we can modify i to be (1, i1, ..., îj , ..., in).

In order to go from (i1, ..., in) to (1, i1, ..., îj , ..., in), we need to shift ij left
j − 1 times to get ij to the first position. In other words, any permutation
i ∈ Sn|(ij = 1) can be modified to be i ∈ Sn|(i1 = 1) through j − 1 pairwise
swaps. Thus,

det(A) =

n∑
j=1

a1j
∑
i∈Sn
ij=1

(−1)iai11ai22...âijj ...ainn

=

n∑
j=1

(−1)j−1a1j
∑
i∈Sn
i1=1

(−1)iai21ai32...aijj−1âij+1jaij+1j+1...ainn

=

n∑
j=1

(−1)j−1a1jdet(A1j)

(9)

This part may take a while to understand. But essentially, we have factored out
the jth column where ij = 1 (i.e. first row) from our equation as (−1)j−1

∑n
j=1 a1j .

What is left turns out to be the determinant formula for A1j since i ∈ Sn|(ii = 1)
is just a permutation of Sn−1.

Remark. We can actually develop an intuitive understanding of cofactor ex-
pansion now that we understand the determinant’s permutation definition. In
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calculating the determinant, if we look at the permutations involving the first
element of the first row of the matrix, the rest of the elements of the permu-
tation must be the permutations of the determinant of the minor of the first
element of the first row. We can apply the same logic to all the elements of
the first row. By summing this up for all elements along the first row, we get
the cofactor expansion formula. Note that the sign of each term comes from
swapping the column of that element with the first column.

The cofactor expansion proof and this intuitive explanation may take a while to
understand because there are a lot of things at play here. To really understand
this process, I would try this proof by hand and write down simple examples to
get an idea of what is going on.

Theorem 2 (Cofactor Expansion along a row). If A ∈ Rn×n and n > 1, then
the cofactor expansion along row k is

det(A) =

n∑
j=1

(−1)j+kakjdet(Akj) (10)

Proof. By swapping row k repeatedly with the row above it, we obtain matrix
A′ with row 1 of A′ being row k of A. This takes k− 1 swaps. This means that
det(A) = (−1)k−1 det(A′). Also, we know that Akj = A′1j and akj = a′1j for
j = 1, ..., n. Then,

detA = (−1)k−1det(A′)

= (−1)k−1
n∑

j=1

(−1)j−1a′1jdet(A′1j)

= (−1)k−1
n∑

j=1

(−1)j−1akjdet(Akj)

=

n∑
j=1

(−1)k+j−2akjdet(Akj)

=

n∑
j=1

(−1)k+jakjdet(Akj)

(11)

Since det(A) = det(AT ) (this is proved below), cofactor expansion along the
columns of A is the same as cofactor expansion along the rows of A except that
akj → ajk and Akj → Ajk.

6 Properties of Determinants

Corollary 2. det(A) = det(AT )
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Proof. We know that

det(A) =
∑

i∈Sn
(−1)iai11ai22...ainn

and

det(AT ) =
∑

j∈Sn
(−1)ja1j1a2j2 ...anjn

These two terms are actually identical. This is because for every product chain
of the n aijs, all the is have to be distinct from one another and all the js have
to be distinct from one another between each aij . This applies to both det(A)
and det(AT ). Thus there is a one-to-one mapping between ai11ai22...ainn and
a1j1a2j2 ...anjn where ai11ai22...ainn = a1j1a2j2 ...anjn . For each bijective pair,
(−1)i = (−1)j since ai11ai22...ainn = a1j1a2j2 ...anjn .

Corollary 3. Every elementary row operation in Gaussian row reduction has a
clear effect on the determinant.

1. Scaling: det(matrix with scales a row by c) = c (e.g.

[
1 0
0 2

]
scales the

second row by 2)

2. Swapping: det(matrix with swaps two rows) = -1 (e.g.

[
0 1
1 0

]
swaps the

two rows)

3. Replacement: det(adding c of one row to another row) = 1 (e.g.

[
1 2
0 1

]
adds

two times the second row to the first row)

Proof. Using the determinant’s multilinearity and antisymmetry properties, we
can prove for all 3 types of elementary matrices.

1. Scaling: det(~v1, ..., c~vi, ..., ~vn) = c det(~v1, ..., ~vi, ..., ~vn)

2. Swapping: det(...,~u,...,~v...) = −det(...,~v,...~u,...)

3. Replacement: det(~v1, ..., ~vi + c~vj , ..., ~vn)
= det(~v1, ..., ~vi, ..., ~vn) + c det(~v1, ..., ~vj , ..., ~vn) = det(~v1, ..., ~vi, ..., ~vn)

Corollary 4. det(AB)= det(A)det(B)

Proof. We will break our proof into two cases.
If A is not invertible, AB is also not invertible so det(AB)= 0 = det(A)det(B).
If A is invertible, A = E1E2...Ek where Ei are elementary matrices (this is
just reversed Gaussian elimination). Corollary 3 implies that det(EkB) =
det(Ek)det(B) since the numbers match up no matter which elementary row op-
eration are used. We can repeat this reasoning to show that det(E1E2...EkB) =
det(E1)det(E2)...det(Ek)det(B). So det(AB) = det(E1)det(E2)...det(Ek)det(B).
Again using Corollary 3, we find that det(AB) = det(A)det(B).
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Remark. There is another proof, which I won’t go into, that uses cofactor
expansion to prove this property. However, this is the most elegant proof in my
opinion.

Corollary 5. det(αA)= αndet(A) where A ∈ Rn×n

Proof. αA scales each row of A by α. By the multilinear property of determi-
nants, we can factor out an α for each row of A when calculating the determinant
of αA.

Corollary 6. Consider the block matrices A1 and A2:

A1 =

[
Ik×k 0

0 A

]
, A2 =

[
A 0
0 Ik×k

]
(12)

such that A is square. Then,

det(A1) = det(A2) = det(A) (13)

Proof. Applying cofactor expansion on the first row of A1, we get det(A1) =

det(

[
I(k−1)×(k−1) 0

0 A

]
). We repeatedly apply this process until we get to det(A).

We apply a similiar process to prove for A2 where we repeatedly apply cofactor
expansion on the last row of A2.

Corollary 7. Consider the block matrices X1, X2, and X3:

X1 =

[
X11 0

0 X22

]
, X2 =

[
X11 X12

0 X22

]
, X3 =

[
X11 0
X12 X22

]
(14)

such that X11 and X22 are both square matrices. Then,

det(X1) = det(X2) = det(X3) = det(X11)det(X22) (15)

Proof.

X1 =

[
X22 0

0 I

] [
I 0
0 X22

]
det(X1) = det(

[
X22 0

0 I

]
)det(

[
I 0
0 X22

]
)

det(X1) = det(X11)det(X22)

(16)

The last line of equation 16 uses corollary 6.
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We will now proof for X3. If X11 is not invertible, X3 is not invertible so
det(X3) = 0 = det(X11)det(X22). Otherwise, if X11 is invertible,

X1 =

[
I 0

−X12X
−1
11 I

]
X3

det(X1) = det(

[
I 0

−X12X
−1
11 I

]
)det(X3)

det(X1) = det(X3)

(17)

det(

[
I 0

−X12X
−1
11 I

]
) = I can be derived by repeatedly applying cofactor ex-

pansion on the first row until we end up with just I.

Since det(A)=det(AT ), det(X2)=det(X3).

Remark. Intuitively, we can see that X12 cannot form any nonzero permuta-
tions since it will always match up with the adjacent zero matrix, so the corollary
must hold.

Corollary 8. det(A−1) = 1
det(A)

Proof.
AA−1 = I

det(AA−1) = det(I)

det(A)det(A−1) = 1

det(A−1) =
1

det(A)

(18)

Corollary 9. The determinant of a triangular matrix is the product of its di-
agonal entries.

Proof. Assume we are working with a lower-triangular matrix first. Apply co-
factor expansion on the first row repeatedly. Automatically, we see that the
determinant of a lower-triangular matrix is the product of its diagonal entries.
Since the determinant of a matrix and the matrix’s tranpose is the same, we
know this is true to upper-triangular matrices as well.

Lemma 3 (Characteristic polynomial).

det(A− λI) = (−1)n(λ− λ1)(λ− λ2)...(λ− λn) (19)

where λ1, λ2, ..., λn are the eigenvalues of A.
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Proof. We can see that

det(A− λI) = (−1)ndet(λI −A) (20)

This equation is true because (λI−A) is just the negative of (A−λI). In other
words, each row of (A−λI) is scaled by −1 to get to (λI−A). Using the scaling
property of corollary 3, we pull out all the −1s (one for each row of the matrix)
to get (−1)n.
Next, we know that

λI −A =

λ− a11 . a1n
. . .
an1 . λ− ann

 (21)

In order to calculate det(λI −A), we do cofactor expansion along the first row
repeatedly. We can see that the highest power of the characteristic polynomial
must be λn with coefficient one (comes from (λ−a11)(λ−a22)...(λ−ann)). Thus
the polynomial must be in the form of λn+cn−1λ

n−1+cn−2λ
n−2+ ...+c1λ+c0λ

where ci are the scalar coefficients for the polynomial. This polynomial must
then equal to (λ − λ1)(λ − λ2)...(λ − λn) since the polynomial’s roots have to
be at the eigenvalues of A (i.e. λ = λi is where det(λI −A) = 0). Plugging this
polynomial back into det(λI −A), we have proved our lemma.

Corollary 10. det(A) is the product of the eigenvalues of A.

Proof.
det(A− λI) = (−1)n(λ− λ1)(λ− λ2)...(λ− λn)

= (λ1 − λ)(λ2 − λ)...(λn − λ)
(22)

The first equation comes directly from lemma 3.
By setting λ to 0, we get

det(A) = λ1λ2...λn (23)

7 2x2 Matrices

Corollary 11 (Determinant of 2x2 matrix).

det(

[
a b
c d

]
) = ad− bc (24)

Proof. We can prove this geometrically. Draw a vector

[
a
c

]
and another vector[

b
d

]
. Create a parallelogram with the two vectors as two of the sides. With some

geometry, we can see the the area of the parallelogram must be ad− bc.
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